- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Yasong (3)
-
Liaw, Peter K. (3)
-
Zhang, Yong (3)
-
Brechtl, Jamieson (1)
-
Chen, Huaican (1)
-
He, Zhanbing (1)
-
Liao, Wei-Bing (1)
-
Song, Wenli (1)
-
Yin, Wen (1)
-
Zhang, Weiran (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Microstructures and Properties of the Low-Density Al15Zr40Ti28Nb12M(Cr, Mo, Si)5 High-Entropy AlloysLi, Yasong; Liaw, Peter K.; Zhang, Yong (, Metals)Low-density materials show promising prospects for industrial application in engineering, and have remained a research hotspot. The ingots of Al15Zr40Ti28Nb12Cr5, Al15Zr40Ti28Nb12Mo5 and Al15Zr40Ti28Nb12Si5 high-entropy alloys were prepared using an arc melting method. With the addition of the Cr, Mo, and Si, the phase structures of these alloys changed to a dual phase. The Cr and Mo promote the formation of the B2 phase, while the Si promotes the formation of a large amount of the silicides. The compression yield strengths of these alloys are ~1.36 GPa, ~1.27 GPa, and ~1.35 GPa, respectively. The addition of Si and Cr significantly reduces the compression ductility, and the Al15Zr40Ti28Nb12SiMo5 high-entropy alloy exhibits excellent comprehensive mechanical properties. This work investigated the influence of Cr, Mo, and Si on the phase structures and properties of the low-density Al-Zr-Ti-Nb high-entropy alloys, providing theoretical and scientific support for the development of advanced low-density alloys.more » « less
-
Zhang, Weiran; Li, Yasong; Liaw, Peter K.; Zhang, Yong (, Metals)The empirical parameters of mixing enthalpy (ΔHmix), mixing entropy (ΔSmix), atomic radius difference (δ), valence electron concentration (VEC), etc., are used in this study to design a depleted uranium high-entropy alloy (HEA). X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were used to assess the phase composition. Compression and hardness tests were conducted to select alloy constituents with outstanding mechanical properties. Based on the experimental results, the empirical criteria of HEAs are an effective means to develop depleted uranium high-entropy alloys (DUHEAs). Finally, we created UNb0.5Zr0.5Mo0.5 and UNb0.5Zr0.5Ti0.2Mo0.2 HEAs with outstanding all-round characteristics. Both alloys were composed of a single BCC structure. The hardness and strength of UNb0.5Zr0.5Mo0.5 and UNb0.5Zr0.5Ti0.2Mo0.2 were 305 HB and 1452 MPa, and 297 HB and 1157 MPa, respectively.more » « less
An official website of the United States government
